3.1076 \(\int \cos ^{\frac{7}{2}}(c+d x) (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=80 \[ \frac{2 (5 A+7 C) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{21 d}+\frac{2 (5 A+7 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{21 d}+\frac{2 A \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d} \]

[Out]

(2*(5*A + 7*C)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*(5*A + 7*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (2
*A*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0743782, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {4066, 3014, 2635, 2641} \[ \frac{2 (5 A+7 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{2 (5 A+7 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{21 d}+\frac{2 A \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(7/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(2*(5*A + 7*C)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*(5*A + 7*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (2
*A*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 4066

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[b^2, Int
[(b*Cos[e + f*x])^(m - 2)*(C + A*Cos[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !IntegerQ[m]

Rule 3014

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[
e + f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e + f*
x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^{\frac{7}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx &=\int \cos ^{\frac{3}{2}}(c+d x) \left (C+A \cos ^2(c+d x)\right ) \, dx\\ &=\frac{2 A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{7} (5 A+7 C) \int \cos ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{2 (5 A+7 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{2 A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{21} (5 A+7 C) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 (5 A+7 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{2 (5 A+7 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{21 d}+\frac{2 A \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end{align*}

Mathematica [A]  time = 0.303661, size = 63, normalized size = 0.79 \[ \frac{2 (5 A+7 C) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+\sin (c+d x) \sqrt{\cos (c+d x)} (3 A \cos (2 (c+d x))+13 A+14 C)}{21 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(7/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(2*(5*A + 7*C)*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(13*A + 14*C + 3*A*Cos[2*(c + d*x)])*Sin[c + d*x
])/(21*d)

________________________________________________________________________________________

Maple [B]  time = 2.288, size = 285, normalized size = 3.6 \begin{align*} -{\frac{2}{21\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 48\,A \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}\cos \left ( 1/2\,dx+c/2 \right ) -72\,A \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) + \left ( 56\,A+28\,C \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( -16\,A-14\,C \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +5\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +7\,C\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(7/2)*(A+C*sec(d*x+c)^2),x)

[Out]

-2/21*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(48*A*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)-72
*A*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(56*A+28*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-16*A-14*C)*si
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipt
icF(cos(1/2*d*x+1/2*c),2^(1/2))+7*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*
d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C \cos \left (d x + c\right )^{3} \sec \left (d x + c\right )^{2} + A \cos \left (d x + c\right )^{3}\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^3*sec(d*x + c)^2 + A*cos(d*x + c)^3)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(7/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(7/2), x)